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ABSTRACT 

In this paper, we obtain some results on the  p  Gol’dberg relative order of entire functions of several complex 

variables which improve some earlier results. 
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INTRODUCTION 

Let f and g be two non-constant entire functions and 

 M (r) = max{|f(z)|: |z| = r},M (r) = max{|g(z)|: |z| = r} be the maximum modulus functions of f and g 

respectively.Then M (r) is strictly increasing function and continuous of r and its inverse M : (|f(0)|, ∞) → (0, ∞) exits 

andlim →∞M (s) = ∞. 

Definition 1: The order ρ  and lower order λ  of an entire function f are defined as follows: 

 ρ =lim →∞sup  [ ] ( ) and λ =lim →∞inf  [ ] ( )  

The function f is said to be of regular growth if ρ = λ  . 

In [1] Lahiri and Banerjee considered a more general definition of order as follows: 

Definition 2:  [1] if p≥ 1 is a positive integer, then the p  relative order of f with respect tog, denoted by ρ[ ](f) 

is defined as 

 ρ[ ](f)=inf μ > 0: M (r) < M exp[ ]rμ , for all r > r (μ) > 0  

If p=1, g (z) =expz, then ρ[ ](f)=ρ (f) the classical order off. 

Definition 3: [4] Let f(z , z ) and g(z , z ) are two non constant entire functions of two complex variables z  and 

z  holomorphic in the closed polydisc 

 {(z , z ): |z | ≤ r ; i = 1,2} And  

 Let M (r , r ) = max{|f(z)|: |z | = r ; i = 1,2},M (r , r ) = max{|g(z , z )|: |z | ≤ r ; i = 1,2} 

The relative order of f with respect to g denoted byρ (f), is defined as 

 ρ (f) = inf μ > 0: M (r) < M (r μ, r μ), for all r ≥ R(μ), r ≥ R(μ) . 

We recall the following notation and definition of relative order of entire functions of n complex variables.  We 
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denote the point (z , z , … . . , z ) ∈ ℂ and (m , m , … . . , m ) ∈ I  by z and m respectively I denote the set of all non 

negative integers.Where ℂ denote the n-dimensional complex space. |z| = (|z | + |z | + ⋯ + |z | )  also we can 

write ||m|| = m + m + ⋯ + m .Let bounded complete n − circular domain D ⊆ ℂ  with centre at origin. Let 

M , (R) = sup ∈  |f(z)|  

For R > 0 a point z∈ D iff ∈ D where f is an entire function of n complex variables Let g be a non constant 

entire function then M , (R) is strictly increasing continuous and its inverse 

 M , : (|g(0)|, ∞) → (0, ∞) Exists such that lim →∞M , (R) = ∞.The Gol’dberg order of entire function of n 

complex variables is defined as follows: 

Definition 4: [7] The Gol’dberg order ρ ,  of f with respect to domain is defined as follows 

 ρ , = lim →∞sup
 [ ]

, ( )
  

The lower Gol’dberg order λ ,  of f with respect to domain D is defined as 

 λ , = lim →∞inf  [ ]
, ( )

  

If f is regular growth if ρ , = λ , . 

Theρ , , order is independent of the choice of the domain D in {cf. [7]} and therefore we denote the order of f  

asρ . 

Definition 5: p  Gol’dberg order and lower Gol’dberg order are denoted by ρ ,
[ ] and λ ,

[ ]  are respectively defined 

as follows: 

 ρ ,
[ ] = lim →∞sup

 [ ]
, ( )

  

And  

 λ ,
[ ] = lim →∞inf  [ ]

, ( )
  

Where p = 2,3,4, … 

In recent paper Mondale and Roy [6] introduced the concept of relative order of entire functions of n-complex 

variables. They gave the following definition. 

Definition 6: ([1],[4],[6]) Let f, and g be entire functions of n complex variables and D be a bounded complete n-

circular domain with centre at the origin in C .Then the p  relative order ρ ,
[ ] (f) of f with respect to g in the domain D is 

defined by 

 ρ ,
[ ] (f) = inf μ > 0: M , (r) < M , exp[ ]Rμ , for R ≥ R (μ) > 0   

=lim →∞sup
 [ ]

, , ( )
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Where p = 1,2,3, , … 

If we take g(z) = e = e( , ,…, ) and p = 1, then the relative Gol’dberg order ρ , (f) of f with respect to g in 

the domain D coincides with Gol’dberg ρ ,  of f with respect to domain D. 

We define the p  Gol’dberg relative order λ ,
[ ] (f) of f with respect to g in the domain as 

 λ ,
[ ] (f) = lim →∞inf

 [ ]
, , ( )

  

Where p = 1,2,3, , … 

In this paper we obtain some relationship between relative order, relative lower order, Gol’dberg order and 

Gol’dberg lower order, p  Gol’dberg relative (order and lower order) of entire functions of several complex variables 

which improves some earlier results. 

THEOREMS 

Theorem 1: Let f and g be entire functions of n complex variables such that 0 < λ[ ] ≤ ρ[ ] and 0 < λ[ ] ≤ ρ[ ] 

.Then 

 λ[ ]

ρ[ ] ≤ λ[ ](f) ≤ min λ[ ]

λ[ ] ,
ρ[ ]

ρ[ ] ≤ max λ[ ]

λ[ ] ,
ρ[ ]

ρ[ ] ≤ ρ[ ](f) ≤
ρ[ ]

λ[ ]  

Proof: From the definition of p -Gol’dberg order and lower order we get arbitrary ε > 0 and for all large values 

of R then 

 M (R) < exp[ ]R ρ[ ] ε                                                                                                                              (1) 

 M (R) < exp[ ]R ρ[ ] ε                                                                                                                             (2) 

 M (R) > exp[ ]R λ[ ] ε                                                                                                                              (3) 

 M (R) > exp[ ]R λ[ ] ε                                                                                                                             (4) 

Also for a sequence {R } tending to infinity we get 

 M (R ) > exp[ ]R ρ[ ] ε                                                                                                                          (5) 

 M (R ) > exp[ ]R ρ[ ] ε                                                                                                                         (6) 

 M (R ) < exp[ ]R λ[ ] ε                                                                                                                          (7) 

And M (R ) < exp[ ]R λ[ ] ε                                                                                                                  (8) 

Now from the definition of p  relative order we get, for arbitrary ε > 0 and for all large values of  R then  
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 ρ[ ](f) + ε >
 [ ] ( ( ))

  

Now from (5) we get for a sequence {R } tending to infinity that 

 ρ[ ](f) + ε >
 [ ] [ ] ρ[ ] ∈

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

[ ]

ρ[ ] ε

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

   

 >

 [ ]

⎝

⎜
⎜
⎜
⎛

[ ]

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎞

 

 =
ρ[ ] ε

ρ[ ] ε
  

As ε > 0 and ε > 0 are arbitrary we get that 

 ρ[ ](f) ≥
ρ[ ]

ρ[ ]                                                                                                                                                              (9) 

 Also from (1) we get for arbitrary ε > 0 and for all large values of R that 

 
 [ ] ( ( ))

<
 [ ] [ ] ρ[ ] ε

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

[ ]

ρ[ ] ε

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

Now from (6) we get for a sequence {R } tending to infinity that 

 
 [ ] ( ( ))

<

 [ ]

⎝

⎜
⎜
⎜
⎛

[ ]

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎞

  

 lim →∞inf
 [ ] ( ( ))

≤
ρ[ ] ε

ρ[ ] ε
  

As ε > 0 is arbitrary we have 
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 λ[ ](f) ≤
ρ[ ]

ρ[ ]                                                                                                                                                            (10) 

Now from the definition of p  relative lower order we get for arbitrary ε > 0 and for all large values of R that  

 λ[ ](f) − ε <
 [ ] ( ( ))

  

Now from (7) we get for a sequence {R } tending to infinity 

 λ[ ](f) − ε <
 [ ] [ ] λ[ ] ε

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

[ ]

λ[ ] ε

λ[ ] ε

λ[ ] ε

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

  

<

 [ ]

⎝

⎜⎜
⎛

[ ]

λ[ ] ε

λ[ ] ε

⎠

⎟⎟
⎞

  

 =
λ[ ] ε

λ[ ] ε
  

As ε > 0 and ε > 0 are arbitrary we obtain that  

 λ[ ](f) ≤ λ[ ]

λ[ ]                                                                                                                                                            (11) 

Now from (3) we get arbitrary ε > 0 and for all large values of R that 

 
 [ ] ( ( ))

>
 [ ] [ ] λ[ ] ε

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

[ ]

λ[ ] ε

λ[ ] ε

λ[ ] ε

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

  

Now from (8) we obtain for a sequence {R } tending to infinity that 

 
 [ ] ( ( ))

>

 [ ]

⎝

⎜⎜
⎛

[ ]

λ[ ] ε

λ[ ] ε

⎠

⎟⎟
⎞
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 lim →∞sup
 [ ] ( ( ))

≥ λ[ ] ε

λ[ ] ε
  

As ε > 0 is arbitrary ε > 0 and for a sequence {R } tending to infinity that 

 ρ[ ](f) − ε <
 [ ] ( ( ))

<
 [ ] [ ] ρ[ ] ε

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

[ ]

ρ[ ] ε

λ[ ] ε

λ[ ] ε

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

  

 <

 [ ]

⎝

⎜
⎜
⎛

[ ]

ρ[ ] ε

λ[ ] ε

⎠

⎟
⎟
⎞

  

 =
ρ[ ] ε

λ[ ] ε
  

 ε > 0 And ε > 0 are arbitrary, we have 

 ρ[ ](f) ≤
ρ[ ]

λ[ ]                                                                                                                                                            (13) 

As we get for arbitrary   ε > 0 and ε > 0  for a {R } tending to infinity that 

 λ[ ](f) + ε >
 [ ] ( ( ))

>
 [ ] [ ] λ[ ] ε

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

[ ]

λ[ ] ε

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

 <

 [ ]

⎝

⎜
⎜
⎜
⎛

[ ]

λ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎞

  

 =
λ[ ] ε

ρ[ ] ε
  

As  ε > 0 and  ε > 0 are arbitrary, we obtain that 
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 λ[ ](f) ≥ λ[ ]

ρ[ ]                                                                                                                                                            (14) 

The theorem follows from (9), (10), (11), (12), (13) and (14). 

Corollary 1: If both f and g are regular growth with non zero order then  

 ρ[ ](f) = ρ[ ](g) iffρ[ ] = ρ[ ]. 

Corollary 2: If both f and g are regular growth with non zero order then  

 λ[ ](f) = ρ[ ](f)  

Corollary 3: If  g is regular growth with non zero order then  

 ρ[ ](f) ≥
ρ[ ]

ρ[ ]  

Theorem 2: Let f and g be entire functions of n complex variables such that ρ[ ] = 0 and 0 < ρ[ ] < ∞.Then 

λ[ ](f) = 0 

Proof: From the definition of Gol’dberg order we have for arbitrary ε >  and for all large values of r that 

 M (R) < exp[ ]R(ε)   

 
 [ ] ( ( ))

<
 [ ] [ ] (ε)

  

 =

 [ ]

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

[ ]

ε

ρ[ ] ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

Now from (6) we get for a sequence {R } tending to infinity that 

 
 [ ] ( ( ))

<

 [ ]

⎝

⎜
⎜
⎜
⎛

[ ]

ε

ρ[ ] ε

⎠

⎟
⎟
⎟
⎞

  

 lim →∞inf
 [ ] ( ( ))

≤ ε

ρ[ ] ε
  

As ε > 0 is arbitrary it follows thatλ[ ](f) = 0. 

Theorem 3: Let f and g be entire functions of n complex variables such that 0 < ρ[ ] < ∞ andρ[ ] = 0. 

Thenρ[ ](f) = ∞ 

Proof: From the definition of relative order we get for arbitrary ε > 0 and for all large values of R that 
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 ρ[ ](f) + ε >
 [ ] ( ( ))

  

Now from (5) we get for a sequence {R } tending to infinity 

 ρ[ ](f) + ε >
 [ ] [ ] ρ[ ] ε

  

 =

 [ ]

⎝

⎜⎜
⎜
⎛

⎝

⎜⎜
⎛

[ ]

ρ[ ] ε
ε

ε

⎠

⎟⎟
⎞

⎠

⎟⎟
⎟
⎞

  

 <

 [ ]

⎝

⎜⎜
⎛

[ ]

ρ[ ] ε
ε

⎠

⎟⎟
⎞

  

 =
ρ[ ] ε

ε
  

As ε > 0 and ε > 0 are arbitrary it follows thatρ[ ](f) = ∞. 
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