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ABSTRACT

In this paper, we obtain some results on the p™ Gol’dberg relative order of entire functions of several complex

variables which improve some earlier results.
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INTRODUCTION

Let f and g be two non-constant entire functions and

M¢(r) = max{|f(z)|: |z| = r},My(r) = max{|g(z)|:|z| =r} be the maximum modulus functions of f and g
respectively. Then M(r) is strictly increasing function and continuous of r and its inverse M;*: (Jf(0)],0) — (0, ) exits

andlimg_,,M;*(s) = oo.
Definition 1: The order p, and lower order A of an entire function f are defined as follows:

log [2] M¢(r)
logr

log [21 M¢(r)

=i inf
and A=lim,._,, Tomr

pe=lim,._, ;sup
The function f is said to be of regular growth if p, = A .

In [1] Lahiri and Banerjee considered a more general definition of order as follows:

Definition 2: [1]if p> 1 is a positive integer, then the p™® relative order of f with respect tog, denoted by pg’] ®

is defined as
pg’](f)=inf{u > 0: M¢(r) < Mg(expP~Urt), forall r > ro(p) > 0}
If p=1, g (z) =expz, then pg’] (f)=pg (f) the classical order off.

Definition 3: [4] Let f(z,,2,) and g(z,,z,) are two non constant entire functions of two complex variables z; and

Z, holomorphic in the closed polydisc
{(z1,25): 1] < 1y;i= 1,2} And
Let M¢(r;, 1) = max{|f(2)|: |z;]| = r;;i = 1,2} My(ry, 15) = max{lg(z,,2,)|: lz| <rj;i = 1,2}
The relative order of f with respect to g denoted bypg (f), is defined as
pg(f) =inf{p > 0: M;(r) < Mg (r;*,1,"), for allry = R(w),r, = R(W}.

We recall the following notation and definition of relative order of entire functions of n complex variables. We
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denote the point (z,%,, .....,2,) € C"and (m;, m,, .....,m,) € [" by z and m respectively 1 denote the set of all non

L . . 1
negative integers.Where Cdenote the n-dimensional complex space. |z| = (|z,]? + |2,]2 + -+ |z,2)"/2 also we can

write ||m|| = m; + m;, + -+ 4+ m,.Let bounded complete n — circular domain D € C® with centre at origin. Let
M¢p(R) = sup,ep, |f(2)]
For R > 0 a point z€ Dgiff § € D where f is an entire function of n complex variables Let g be a non constant

entire function then Mg (R) is strictly increasing continuous and its inverse

Mgp: (Ig(0)], ) = (0,0) Exists such that limg_,,,Mg5(R) = o0.The Gol’dberg order of entire function of n

complex variables is defined as follows:
Definition 4: [7] The Gol’dberg order p;  of f with respect to domain is defined as follows

log [21 M¢p (R)

Pep = limg_,.sup logR

The lower Gol’dberg order A¢p of f with respect to domain D is defined as

. . log 21 M¢p(R)
Aep = llmR_mlnfT
If f is regular growth if p, ; = A¢p.

Thep, ,, order is independent of the choice of the domain D in {cf.[7]} and therefore we denote the order of f

asp;.
Definition 5: p™" Gol’dberg order and lower Gol’dberg order are denoted by p?g and ng, are respectively defined
as follows:
Pl = limRmsupwg“’i)%@
And
Mp = limRminf“’g“’i’%@

Where p = 2,34, ...

In recent paper Mondale and Roy [6] introduced the concept of relative order of entire functions of n-complex

variables. They gave the following definition.

Definition 6: ([1],[4],[6]) Let f, and g be entire functions of n complex variables and D be a bounded complete n-
circular domain with centre at the origin in C®.Then the pt™ relative order pép]]) f) of f with respect to g in the domain D is
defined by

pgg(f) = inf{p > 0: M;p(r) < My p(expP~HRE), for R = Ry () > 0}

log [PIM_ 1, (M¢p (R))

=limg_, su
RoxSUP logR
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Where p = 1,2,3,, ...

If we take g(z) = e* = e(?1%27n) and p = 1, then the relative Gol’dberg order Pgp (f) of f with respect to g in
the domain D coincides with Gol’dberg p, ;, of f with respect to domain D.

We define the p™ Gol’dberg relative order X[g’_)]]) (f) of f with respect to g in the domain as

Il ren 1o . log PIMzh(Mep(R)
Agp () = hmR_mlnf—logR
Where p = 1,2,3,, ...

In this paper we obtain some relationship between relative order, relative lower order, Gol’dberg order and
Gol’dberg lower order, p Gol’dberg relative (order and lower order) of entire functions of several complex variables

which improves some earlier results.

THEOREMS

Theorem 1: Let f and g be entire functions of n complex variables such that 0 < XEP] < pﬁp] and 0 < Xg)] < pg’]

.Then

i [p] N W e rPL
<A < min , / < max , / < p'P < /
/ plpl =% ® ALY pIP! AL plPl (= Pe ® AP

Proof: From the definition of p"-Gol’dberg order and lower order we get arbitrary £ > 0 and for all large values

of R then

[ ]
M(R) < exp <exp p-1R( e ) (1
1 [p]
Mg(R) < exp <exp p- R ) 2)
M((R) > exp <exp p-11g(H 3)
Mg(R) > exp <exp[p_1]R(7‘g _S)) @)
Also for a sequence {R,} tending to infinity we get
[p]
M((R,) > exp <exp p-1R (o S)) 5)
[pl_
Mg (R,,) > exp <exp p-1R (v )) ©)
[p]
M((R,) < exp <exp p-1R (a +S)) ™
[p]
And M¢(R,) < exp <exp[p‘1] Rn(xg +S)) ®)

Now from the definition of p*" relative order we get, for arbitrary &; > 0 and for all large values of R then
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log [P Mz 1 (M¢(R))

[p]
pg (f) + & > logR

Now from (5) we get for a sequence {R,} tending to infinity that

[p]_
log P! Mg1<exp<exp[p—ﬂgn(*‘f E)))

logRp

Pép](f) t+& >

[pl, .

P,
<p£p]_s> g
[p]
log [P] Mg1| exp expP~1R, Pg *e

logRp

<p[p]_s>
pl, .
log [P] Mg Mg| exp [p-1] Rnpg ‘

logRp
_ o

- pl[gp]Jng

As g; > 0 and € > 0 are arbitrary we get that

[p] i
ng ® = @

Also from (1) we get for arbitrary € > 0 and for all large values of R that

[p]
log [PI Mg exp(exp[p_l]R(pf +S)>
log [P] Mg 1 (M¢(R)) <

logR logR

[pl_,

Py €
pEp]+s 8
p[p]_s
log [P] Mg?| exp expP~1R\"8

logR

Now from (6) we get for a sequence {R,} tending to infinity that

p%p]ﬂ‘
p[P]_S
log [P] Mg 1Mg explP~1Ry &

log [P Mz " (M¢(Rn))
logRp logRp

limanwin -

log [PIMz1(M¢(Rn)) < <p£p] +a>

logRp P[gp]_

As ¢ > 0 is arbitrary we have
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[p]
g

[Pl p) < PE
o <% (10)
Now from the definition of p™ relative lower order we get for arbitrary €, > 0 and for all large values of R that

log [P] Mg 1 (M¢(R))

[pleey _
A (F) — ¢, < ogR

Now from (7) we get for a sequence {R,} tending to infinity

[p]
log [P] Mg1<exp<exp[p—1lgn@f “)))

logRp

W) — ¢, <

[p]

Ay =&
}\.E;p]+8> g

[p]
log [P] Mg?| exp exp[p_l]Rn<}‘g €

logRp

}L£p]+s
API_,
log [P] Mg M| exp [p-1] R, &

<
logRp

_ XEp]ﬂ:
— ,Ip]
}\g

—€

As g; > 0 and € > 0 are arbitrary we obtain that

[p] x;p]
Ag () < 7 (11)

Now from (3) we get arbitrary € > 0 and for all large values of R that

[p]_,
log [P Mz1 exp<exp[P—1]R(}Lf *))
log [P Mz 1(M¢(R)) S

logR logR
[p]
Ay e
}LEP]—s g
B N
log[p]Mg1 exp| expP~1IR\*g *¢

logR
Now from (8) we obtain for a sequence {R,} tending to infinity that
()
[p]
log [P] Mg 1M, exp[p_l]RH}Lg e

log [P Mz 1 (M¢(Rp))
logRp logRp
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log [P Mz (M¢(Ry)) _ MP)—c
logRp - X[gp]+a

limg _,..sup

As € > 0 is arbitrary €5 > 0 and for a sequence {R,,} tending to infinity that

-1 1 (p[p]—s)
log [P] Mg exp explP-1IR, \"g
log [PI Mz (M¢(R,)) <

logRp logRp

Pép](f) —& <

[Pl

—&

p[p]+s &
[p] M= 1 [p-1lg, M ¢
log IPIMg*| exp| exp!P~HR, \"8

logRp

pEp]+s
k[gp]—s

log [P] Mg M| exp [P-1lR

<
logRp

p£p]+a

- X[gp]—a

€5 > 0 And € > 0 are arbitrary, we have
[p] il

p () < D)

As we get for arbitrary ¢, > 0 ande > 0 for a {R,} tending to infinity that

[p]_
log [P] Mgt exp(exp [p_l]Rn(}Lg S))
log [P Mz 1 (M¢(Rp))

logRp logRp

W) + ey >
p[p] te

<k[p]_s> g
[p]
log [P] Mg?| exp expP~1R, Pg

logRp

pl, .
log [P] Mg Mg| exp [p-1] Rnpg ‘

logRp

XEP]—S

= —pl[%m -

As g, > 0and ¢ > 0 are arbitrary, we obtain that
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ol ey = M
7"g (f) > W (14)
g

The theorem follows from (9), (10), (11), (12), (13) and (14).

Corollary 1: If both f and g are regular growth with non zero order then
pIPI(D) = p! (@) iffplP! = py?.

Corollary 2: If both f and g are regular growth with non zero order then

O = plPI(D)
Corollary 3: If gis regular growth with non zero order then
[p] il
Py ® = ST
Theorem 2: Let fand g be entire functions of n complex variables such that pﬁp] =0and 0 < pg’] < o0.Then
Pl ey =
A () =0
Proof: From the definition of Gol’dberg order we have for arbitrary € > o and for all large values of r that

M¢(R) < exp(expP~1IR®)

log [P] Mg (M¢(R)) - log [P Mz (exp(explP~1IR®))
logR logR

—€

[p]
g

P,
€
p[p]_S
log [P Mg?| exp| explP~1IR\"8

logR
Now from (6) we get for a sequence {R,} tending to infinity that
€
Pl
log [P] MglMg exp[P_l]Rn g

log [P Mz 1 (M¢(Rn))

logRp logRp
i iy 08 P Mg (Mr (Rn)) e
m n
Rp—o logRn = P[gp]—S

As g > 0 is arbitrary it follows that?»[gp](f) =0.

Theorem 3: Let fand g be entire functions of n complex variables such that 0 < pﬁp] < ooandpg)] =0.

Thenp[gp] =
Proof: From the definition of relative order we get for arbitrary €, > 0 and for all large values of R that
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log [P Mz (M¢(R))

[p]
Pg ®) +& > logR

Now from (5) we get for a sequence {R,} tending to infinity

[p]_
log [P] M§1<exp<exp[P_1]RH(pf S)))

logRp

Pép](f) t+& >

€
<p£p]_s>
€
log [P] Mg?| exp expP~1R,

logRp

<p£p] _S>
log [P] Mg M| exp (P-1lR

<

logRp

p£p]—a

€

As g, > 0 and € > 0 are arbitrary it follows thatpg’] ) = .
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